3GPP TSG_CN WG5#9

Tdoc N5-010076
Helsinki, Finland

6th – 8th February, 2001

Source:
Lucent Technologies

Title:
Comments on N5-0100026
Agenda item:
5.5
Document for:
DISCUSSION
Introduction

Lucent Technologies has had the opportunity to study the material contributed by the Parlay Content Based Charging Group in document N5-010026, which reports the results of the January 2001 Parlay meeting in Singapore. Lucent would like to kindly request the meeting to discuss these comments and feedback on the technical output of the Parlay meeting presented in Tdoc N5-0100026.

Results on the appropriate corresponding interface

In order to keep the set of OSA APIs consistent, result and error methods that are the outcome of a request on a certain service side interface should be invoked on the corresponding application side interface. In the Parlay Charging model of N5-0100026, the reservationReq() and rateAndReservationReq() methods are part of the IpChargingManager interface on the server side. The reservationRes(), reservationErr(), rateAndReservationRes() and rateAndReservationErr() methods, however, are not part of the corresponding IpAppChargingManager on the application side, but part of the IpAppReservation interface. In our opinion, these methods should be part of the IpAppChargingManager interface, for consistency and clarity reasons.

An example of this situation is contained in the sequence diagram in section 2.1.1 of document parlayAPIs_3_x_ChgSeqDiags_0_2 from the package in N5-0100026.

[image: image1.emf] : IpAppReservation : IpAmount

Reservation

 : IpCharging

Manager

1: createReservationReq()

2: createReservationRes()

Application interfaces for reservation objects

In order to keep the set of OSA APIs logical and consistent, the IpAmountReservation and IpRatingReservation interfaces on the server side should respectively have an IpAppAmountReservation and IpAppRatingReservation interface for callbacks on the application side. The application side interfaces are not specified, as can be seen from figure 3 in document parlayAPIs_3_x_ChgClassDiags_0_2 from the package in N5-0100026.

Take over of reservation

Lucent Technologies would like to question the use case for providing applications the ability to take over reservations. In the rarely cases that this functionality is required, application A can release the reservation and application B can create a new reservation. It is the responsibility of the user if another application creates a reservation in the meantime and there is not enough amount left to create a new reservation for application B.

In the interest of providing application developers with a simple interface to control network functionality, the OSA API’s should remain as simple as possible and not to add several methods that probably might be useful only in certain specific cases. Furthermore, within 3GPP SA1 there are no specific requirements for the take over of reservation functionality.

Lucent would like to request for clarification on the use cases (e.g. example applications) and on the Parlay requirements for this functionality.

Avoid operator specific items

In quite a number of methods, the parameter TpCHSParameter is used. That parameter consists of a parameter ID and a parameter value. The values of that parameter are not specified by Parlay, but can be specified by the operator itself. This means that the methods that include this parameter become operator specific, what consequently means that the Charging interface doesn’t comply with the objective of being an open interface anymore.

Removal of the getReservationLeft() method

By introducing the remaining amount of a reservation as a parameter in the creditRes() and debitRes() method after a credit or debit request, the application will automatically be informed of the amount of the unused part of the reservation remaining after a change. Subsequently, the getReservationLeft() method is no longer needed and can be removed. Lucent kindly requests the meeting to introduce this parameter to the relevant methods, and removing the getReservationLeft method.

Use of merchantAccount is risky

In our opinion, it is potentially risky to let charges be applied by merchants that are not directly authenticated by the framework. E.g., when the client application is a WAP gateway and this application is performing charging on behalf of a (unreliable) merchant that is using that gateway, which party will then be accountable or responsible for incorrect charges on a user or other merchant? Only the WAP gateway in this scenario is authenticated by the framework, not the merchant.

Query the account balance

Stage 1 3GPP requirements state that applications should be able to query account balances. Of course, there are some privacy issues involved here. Nevertheless, the queryBalanceReq(), -Res() and -Err() methods should be added to the Charging API package, as was suggested in Phoenix for the Account Management interface. Lucent kindly requests the Parlay representatives to elaborate on how they view this Account Management functionality can be included in the Charging API package.

Method

queryBalanceReq()

This method is used by the application to query the balance of a user’s account.

Parameters

appChargingManagerReference : in IpAppChargingManagerRef

If this parameter is set (i.e. not NULL), it specifies a reference to the application interface that is used for callbacks. If it is set to NULL, the application interface defaults to the interface specified via the setCallback() method.

user : in TpAddress

Specifies the user for which the balance is queried.
queryId : out TpSessionIDRef

Specifies the ID of the balance query request.
Raises

TpCSException,TpGeneralException
Method

queryBalanceRes()

This method indicates that the request to query the balance was successful and it reports the requested balance of an account to the application.

Parameters

queryId : in TpSessionID

Specifies the ID of the balance query request.
balances : in TpBalance

Specifies the balance for a user’s accounts.
Raises

TpCSException,TpGeneralException
Method

queryBalanceErr()

This method indicates that the request to query the balance failed and it reports the cause of failure to the application.

Parameters

queryId : in TpSessionID

Specifies the ID of the balance query request.
cause : in TpBalanceQueryError

Specifies the error that led to the failure.
Raises

TpCSException,TpGeneralException
chsParameters

When an application uses the createReservationReq() method, the application itself determines the amount to be reserved, rather than using the rating functionality of a charging server in the network. Therefore the chsParameters parameter should not be in the parameter list of the createReservationReq() method. The same applies for creditUserReq() and debitUserReq(). It is our interpretation that the IpAmountReservation interface is predominantly targeted towards 3rd party applications, whereas the IpRatingReservation interface is mainly meant for applications within the managed domain of the network operator. If that is indeed the case, then the chsParameters parameter should in our view be removed from the methods in the IpAmountReservation interface.

The use of the appSessionID Parameter

Lucent would like to request some clarification on the use of the appSessionID parameter. The semantics description for this parameter in document parlayAPIs_3_x_ChgInterfaces_0_2 from the package in N5-0100026 is very generic, and as such doesn’t provide sufficient information on the use of this parameter.

· “Session ID of the application, the application will get this session id returned by parlay charging in call-back functions called.”

· “The session ID provided by the application in the request.”

Wouldn’t the use of parameters such as reservationSessionID or requestNumber be sufficient in these interfaces?

� Musa Unmehopa, � HYPERLINK mailto:unmehopa@lucent.com ��unmehopa@lucent.com�; Ralph Koppelaar, � HYPERLINK "mailto:rkoppelaar@lucent.com" ��rkoppelaar@lucent.com�

